metrica de las empresas para avanzar en el mercado
Slider

Errores comunes en la analítica empresarial

Hay muchas maneras de trabajar con los datos, por eso se aconseja a los líderes de las compañías que exploren la mayor cantidad de posibilidades. Cada una presenta distintas oportunidades de obtener ganancias y ventajas competitivas, desde mejoras en los productos hasta nuevas fuentes de ingresos y cambios en la industria.

Un equipo de científicos de datos puede hacer una serie de análisis inteligentes para obtener una visión importante, pero esa idea morirá antes de nacer si otros en la organización no la llevan adelante, mediante el desarrollo de una comprensión más profunda de las implicaciones, tomando así una decisión crítica y aprovechando las interacciones con los clientes.

¿Tu empresa sabe qué hacer con todos sus datos?

Aunque incorporar datos en la toma de decisiones puede ser difícil, primero se deben seleccionar los más relevantes y precisos, para luego reducir la incertidumbre y aumentar las posibilidades de tomar decisiones acertadas.

Grandes ideas pueden surgir de este proceso, mejorando los productos, servicios y procesos. Por ejemplo, en Morgan Stanley, Jeff McMillan mejora las relaciones de trabajo con sus clientes de gestión patrimonial analizando todo: objetivos y carteras de los clientes, productos de inversión disponibles y correos electrónicos. Luego, un algoritmo toma esta información y sugiere acciones, así los asesores pueden escoger lo mejor para sus clientes.

McMillan invita constantemente al asesor a “imaginar que tiene una conversación a las 6:00 PM todas las tardes con un MBA de Harvard con 800 años de experiencia”. 

Piensa en las oportunidades de tus clientes durante la noche, y por la mañana, presenta una lista de las 10 mejores acciones para el día. El objetivo es desarrollar

McMillan invita constantemente al asesor a “imaginar que tiene una conversación a las 6:00 PM todas las tardes con un MBA de Harvard con 800 años de experiencia”. 

Piensa en las oportunidades de tus clientes durante la noche, y por la mañana, presenta una lista de las 10 mejores acciones para el día. El objetivo es desarrollar estrategias personalizadas para cada cliente con base en muchos datos. ¿No ayudaría esto a que tus clientes sean más felices?

Todo lo que hace una compañía, desde la entrega de productos hasta la administración del espacio, utiliza enormes cantidades de datos, por eso se debe abordar de forma proactiva la calidad, eliminando las causas de errores. Los datos malos hacen que este trabajo sea más difícil y aumenta el costo hasta en un 20% de los ingresos. 

La mayoría de empresas no piensan a menudo en vender sus datos, pero hacerlo puede brindar una gran oportunidad. Por ejemplo, las compañías de seguros de automóviles descubrieron información relativamente simple que podrían vender: la cantidad de pólizas nuevas escritas todos los días, refleja la salud de los fabricantes de automóviles.

Debido a que cada venta requiere una nueva póliza de seguro, la cantidad de pólizas nuevas emitidas todos los días, proporciona un indicador más rápido. Esto se convierte en un flujo de ganancias para los emisores, que agregan estos datos a toda la industria y los empaquetan.

Usar los datos en todo su potencial, está más relacionado a la gestión que a la tecnología.

¿Cuál es tu estrategia de datos?

Los estudios intersectoriales muestran que, en promedio, menos de la mitad de los datos de una organización se utilizan activamente para tomar decisiones, y menos del 1% de los datos no estructurados se analizan en absoluto. Más del 70% de los empleados tienen acceso a datos que no deberían y el 80% del tiempo de análisis se usa para descubrir y preparar datos. 

La defensa y la ofensiva de los datos se diferencian por objetivos empresariales y actividades diseñadas para abordarlos. La defensa trata de minimizar el riesgo, garantizando el cumplimiento de las normativas (como las que rigen la privacidad de los datos y la integridad de los informes financieros), también hace un análisis para detectar y limitar el fraude y crear sistemas para evitar el robo. 

Los esfuerzos defensivos también aseguran la integridad de los datos, que fluyen a través de los sistemas internos de la empresa, estandarización y gobierno de fuentes de datos autorizadas, como información sensible de clientes, proveedores y ventas, en una “única fuente de verdad” denominada por sus siglas en inglés como SSOT.

La ofensa de datos se enfoca en apoyar los objetivos comerciales, como aumentar los ingresos, la rentabilidad y la satisfacción del cliente. Por lo general, incluye actividades que generan información del cliente como análisis y modelado de datos para respaldar la toma de decisiones gerenciales mediante, por ejemplo, páneles interactivos.

talba ofensa de datos
En ocasiones es bueno prestar igual atención a la ofensiva como a la defensa, pero no es prudente predeterminar una división 50/50.

Una estrategia de datos sólida, requiere que los datos contenidos en la fuente SSOT sean de alta calidad, granulares y estandarizados, y que las múltiples fuentes de verdad se controlen cuidadosamente, derivándose del mismo SSOT. Esto requiere un buen gobierno, tanto de datos como de tecnología.

Las definiciones de datos pueden ser ambiguas y mutables, pero sin una definición concreta al principio de lo que constituye la “verdad” (ya sea un SSOT o MVOT), las partes interesadas pierden tiempo y recursos, mientras intentan administrar los datos no estandarizados.

Si las reglas para agregar, integrar y transformar los datos no se siguen, especialmente cuando la transformación tiene pasos mal definidos, es difícil replicar las transformaciones y aprovechar la información en toda la organización.

Los bucles de retroalimentación, para mejorar la transformación de datos están ausentes, como el modelado predictivo para realizar análisis complejos. Sin mecanismos para poner estos resultados a disposición de los demás (por ejemplo en MVOT apropiados), las partes interesadas pueden duplicar innecesariamente el trabajo o perder oportunidades.

Un sólido gobierno de datos, depende en gran medida de una buena supervisión tecnológica, y generalmente involucra reuniones de revisión compuestas por ejecutivos de negocios y tecnología.

Si las reglas tecnológicas impiden que un ejecutivo de marketing compre un servidor en su tarjeta corporativa, es mucho menos probable que se creen MVOT “ocultos” no regulados, o análisis de marketing que duplique uno existente en otra área.

El entorno regulado y competitivo de la industria de una empresa, informará la estrategia de datos.

gráfico estrategia de datos

Competir en analítica

Las empresas que buscan aplicaciones de alto impacto o innovaciones de tercera generación, generalmente concentran toda su capacidad en un área que represente la mayor ventaja competitiva. Pero una nueva clase de compañías está naciendo y rompiendo con estos esquemas. 

Organizaciones como Amazon, Harrah’s, Capital One y los Boston Red Sox han sobresalido en sus campos mediante la implementación de análisis de fuerza industrial, en una amplia variedad de actividades. 

En esencia, están transformando sus organizaciones en ejércitos de aplicaciones de alto impacto, abriendo así, camino a la victoria.

Los negocios de hoy en día están saturados de datos, obligando a que las organizaciones compitan con sus análisis. Es ahora cuando las empresas ofrecen productos similares, utilizando tecnologías comparables, causando que los procesos comerciales se encuentren en los últimos puntos de diferenciación y los competidores analíticos expriman hasta la última gota de valor de estos procesos. 

Por lo tanto, se debe conocer qué productos quieren los clientes, los precios que están dispuestos a pagar, cuántos artículos comprarán en la vida y qué desencadenantes motivan a comprar más.

Los empleados contratados por su experiencia con números o entrenados para reconocer su importancia, están armados con la mejor evidencia y las mejores herramientas cuantitativas, facilitando la toma de las mejores decisiones. 

En las empresas tradicionales, los departamentos gestionan la analítica mientras las funciones de cálculo seleccionan sus propias herramientas y forman a su gente. Es de esta manera que el caos toca a la puerta.

Los competidores analíticos entienden que la mayoría de las funciones comerciales, incluso aquellas como el mercadeo, se pueden mejorar con sofisticadas técnicas cuantitativas. 

Al hacer esto, las organizaciones no obtienen la ventaja de una aplicación innovadora, sino de múltiples aplicaciones que soportan muchas partes del negocio, y en algunos casos, se implementan para ser utilizadas por clientes y proveedores.

Tabla aplicaciones clientes y proveedores

Compites en analítica cuando:

  1. Aplicas sistemas de información sofisticados y de análisis rigurosos con una gama de funciones tan variadas como marketing y recursos humanos. 
  2. Tu equipo ejecutivo reconoce la importancia de las capacidades de análisis y se enfoca en su desarrollo y mantenimiento.
  3. Basas en hechos la toma de decisiones y haces de esta práctica parte de una cultura interna constante.
  4. Consideras clave para el éxito, contratar no solo a personas con habilidades analíticas, sino a muchas personas con las mejores habilidades analíticas.
  5. Empleas el análisis en casi todas las funciones y departamentos, también lo gestionas a nivel estratégico empresarial.
  6. Inventas métricas propias para utilizarlas en procesos comerciales clave.
  7. No solo utiliza datos en abundancia y análisis internos, sino que también los comparte con clientes y proveedores.
  8. Aprovechas cada oportunidad para generar información, creando una cultura de “prueba y aprendizaje” basada en numerosos experimentos pequeños. 
  9. Desarrollas capacidades empresariales durante varios años para competir con destreza en los análisis.
  10. Haces que las capacidades cuantitativas sean parte de las habilidades de tu empresa, enfatizando en la importancia de los análisis internos e informes anuales financieros.

Los profesionales analíticos más competentes, no solo miden sus propios ombligos, también ayudan a los clientes y proveedores a medir los suyos.

Para competir en analítica es conveniente educar a los empleados a basar sus decisiones en hechos concretos y que sepan que su desempeño se mide de la misma manera. Los altos ejecutivos también establecen un ejemplo con su propio comportamiento, exhibiendo confianza en los hechos y el análisis. Por último, la estrategia de recolección de datos tiene que estar soportada por los pasos y aspectos anteriormente planteados.